首页> 外文OA文献 >Stochastic algorithms for solving structured low-rank approximation problems
【2h】

Stochastic algorithms for solving structured low-rank approximation problems

机译:解决结构化低秩逼近问题的随机算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we investigate the complexity of the numerical construction of the Hankel structured low-rank approximation (HSLRA) problem, and develop a family of algorithms to solve this problem. Briefly, HSLRA is the problem of finding the closest (in some pre-defined norm) rank r approximation of a given Hankel matrix, which is also of Hankel structure. We demonstrate that finding optimal solutions of this problem is very hard. For example, we argue that if HSLRA is considered as a problem of estimating parameters of damped sinusoids, then the associated optimization problem is basically unsolvable. We discuss what is known as the orthogonality condition, which solutions to the HSLRA problem should satisfy, and describe how any approximation may be corrected to achieve this orthogonality. Unlike many other methods described in the literature the family of algorithms we propose has the property of guaranteed convergence.
机译:在本文中,我们研究了汉克尔结构低秩近似(HSLRA)问题的数值构造的复杂性,并开发了一系列算法来解决该问题。简而言之,HSLRA是找到给定的汉克矩阵(它也是汉克结构)的最接近(在某些预定义范数中)秩r近似的问题。我们证明,找到这个问题的最佳解决方案非常困难。例如,我们认为,如果将HSLRA视为估计阻尼正弦曲线参数的问题,则相关的优化问题基本上是无法解决的。我们讨论了所谓的正交性条件,HSLRA问题应满足哪些解决方案,并描述如何校正任何近似值以实现此正交性。与文献中描述的许多其他方法不同,我们提出的算法家族具有保证收敛的特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号